

Zeolite Membrane Reactor for Pre-Combustion Carbon Dioxide Capture

Jerry Y.S. Lin Arizona State University

DOE Award: DE-FE0026435

NETL CO₂ Capture Technology Meeting

August 10, 2016 Pittsburgh, Penn

Overview

Timeline

- Project start date:
 Oct.1, 2015
- Project end date:
 Sept.30, 2018
- Budget Periods:
 - I: 10/1/2015-3/31/2017
 - II: 4/1/2017-9/31/2018

Budget

- Total project funding
 - DOE **\$2,471,557**
 - Cost-share: \$620,527
 - Total: \$ 3,092,084
- Funding for BP I:
 - DOE **\$1,274,869**

Research Area

2B2: Bench-Scale Pre-Combustion CO₂ Capture Development and Testing

Partners

- Arizona State University
- University of Cincinnati
- Media and Process Technology, Inc
- Nexant, Inc.

Project Objectives

To demonstrate a bench-scale zeolite membrane reactor for WGS reaction of coal gasification gas for hydrogen production at capacity equivalent to 10 kW IGCC power plant,

To evaluate the performance and costeffectiveness of this new membrane reactor process for use in 550 MW coal-burning IGCC plant with CO_2 capture.

Technical Background

Approach

Scope of Work

Zeolite Membrane Reactor for Water-Gas Shift Reaction for CO₂ Capture

Zeolite Membrane Requirements:

- > Operate at 350-550°C
- > Chemically stable in H_2S , thermally stable at ~400°C
- Hydrogen permeance ~ 2x10⁻⁷ mol/m².s.Pa (600 GPU)
- Hydrogen selectivity ~ 50

MFI Type Zeolite

Structure of MFI type Zeolite (ZSM-5 or Silicalite)

Highly chemically and thermally stable (up to 700°C)

Surface and cross-section SEM images of (a, b) templated synthesized random oriented MFI membrane, (c, d) templatefree synthesized random oriented MFI membranes (from Lin lab)

(b)

(d)

Properties of Lab-Scale CVD Modified MFI Zeolite Membranes

Parameter	Value
H ₂ Permeance in (mol/m ² .s.Pa)	1-4 ×10 ⁻⁷
H ₂ Permeance in GPU	300-1200
H ₂ /CO ₂ selectivity	20-140
H ₂ /CO selectivity	50-200
H ₂ /H ₂ O selectivity	120-180
H ₂ /H ₂ S selectivity	100-180
Tested stability hours in syngas stream at 400 ppm H ₂ S at 500°C	600

With equal-molar feed of H_2 , CO_2 , CO and H_2O at 500°C and 2 bar feed (Lin and Dong Labs)

WGS in Lab Scale Tubular Membrane Reactor

Experimental and simulated CO conversion (χ_{CO}) of the zeolite membrane reactor (**MR**) and traditional fixed-bed reactor (**TR**) (WHSV=7,500 h⁻¹, $R_{H2O/CO}$ =3.4, Sweep(N_2)= 20 cm³/min; $P_{permeate}$ = 1 bar, T=550°C (from Dong Lab) Modeling of lab-scale zeolite membrane reactor for CO conversion as a function of reaction temperature and pressuring using the experimentally determined parameters (from Lin Lab)

Proposed Bench-Scale Zeolite Membrane Rectors for WGS

	Unit	Measured	Projected
			Performance
Materials Properties			
Materials of Fabrication for Selective Lay	er	Modified MFI	zeolite
Materials of Fabrication for Support Laye	r	Macroporous alumina	with or without a
(if applicable)		macroporous yttria stabi	lized zirconia layer
Nominal Thickness of Selective Layer	μm	5-10	1-5
Membrane Geometry		disk and tube	Small OD tube
Max Trans-Membrane Pressure	bar	7	30
Hours tested without significant degrada	tion	600 hours with 400ppm H ₂ S	1000
Membrane Performance			
Temperature	⊃°C	≥500	≥500
Pressure Normalized Flux for Permeate	GPU or	1000	1200
$(CO_2 \text{ or } H_2)$	equivalent		
CO ₂ /H ₂ O Selectivity	-	/	
CO ₂ /N ₂ Selectivity	-	/	
CO ₂ /SO ₂ Selectivity	-	/	
CO ₂ /H ₂ Selectivity	-	/	
H ₂ /CO ₂ Selectivity	-	140	140
H ₂ /H ₂ O Selectivity	-	100	100
H ₂ /H ₂ S Selectivity	-	180	180
Type of Measurement (Ideal or mixed	-	mixture	mixture
gas)			
Proposed Module Design		Single tube	Multiple tubes
Flow Arrangement	-	Co-current	flow
Packing Density	m²/m³	40-60	
Shell-Side Fluid	-	Sweep with stea	im at 1 bar

Scope of work

- 1) Scaling up a zeolite membrane reactor from lab-scale to bench-scale for combined WGS reaction and H₂ separation
- 2) Conducting a bench-scale study using this zeolite membrane reactor for hydrogen production for IGCC with CO₂ capture.

Goal is to demonstrate effective production of H_2 and CO_2 capture by the bench-scale zeolite membrane reactor from a coal gasification syngas at temperatures of 400-550°C and pressures of 20-30 atm:

- Bench-scale zeolite membrane reactor: 70 zeolite membrane tubes of 3.5 ID, 5.7 OD and 25 cm L(active)
- A system producing H₂ at rate of about 10 kg/day, equivalent to a 10-kW_{th} IGCC power plant

Approaches/Tasks

Progress

Current Status

General Approach to Scaling up WGS Zeolite Membrane Reactor

Single-tube zeolite membrane reactor: study WGS up to 30 atm by experiments and modeling

Intermediate-scale membrane reactor: 7 to 14 tube membrane module, and WGS reaction in the intermediatescale reactor

Bench-scale membrane reactor: 70 tube membrane module, and WGS reaction in the bench-scale membrane reactor Membrane reactor in IGCC with CO₂ capture - process design and technoeconomic analysis

Fabrication of Zeolite Membranes

In-situ synthesis of MFI film on multiple support tubes (35 cm long, 3.5 mm ID and 5.7 mm OD) on horizontally rotating synthesis reactor housing 61 tubes

Formation of single and multiple tube zeolite membrane module

CVD modification of the single or multiple tube zeolite membrane in membrane modules with simultaneous measurement of H_2/CO_2 separation characteristics

horizontally rotating multi-tube zeolite membrane synthesis reactor

Progress: Membrane Preparation and Scale-up

Progress: Optimizing Tubule Support Fabrication

Substrate Tube Strength: Material Stability in Zeolite Synthesis Solution

<u>Challenge Conditions:</u> 1.4wt% NaOH; T = 180°C; 6 and 48 hours <u>Post Challenge Strength Determination:</u> 3-Point Bend Test

Other details:

- ➤ Nominal tube wall thicknesses of 1, 1.45, and 1.75mm tested
- Target bend strength minimum ~ 40psi based upon commercial 1mm tube

Test Condition	No Challe	nge Testing		1.4wt% N	aOH, 6 ho	urs	1.4wt% N	IaOH, 48 1	nours
Part ID	Standard	TW#1	TW#2	Standard	TW#1	TW#2	Standard	TW#1	TW#2
OD	5.7mm	6.6mm	7.2mm	5.7mm	6.6mm	7.2mm	5.7mm	6.6mm	7.2mm
	Pre-0	Challenge T	esting	Post (Challenge T	Sesting	Post C	Challenge T	esting
Strength [lb]	40	59	63	33	50	56	33	47	54
	41	56	82	36	44	56	32	44	57
	38	63	70	32	50	60	34	54	55
	40	59	81						
	40	58	71						
	40	60	72						
Average	39.8	59.2	73.2	33.7	48.0	57.3	33.2	48.3	55.3
% Loss from O	riginal Part	Strength		15.5%	18.9%	21.6%	16.7%	18,4%	24.4%

- 1. <u>Target strength</u> required for finished zeolite membrane tube is based upon MPT commercial experience with the Imm wall standard part.
- 2. <u>Post challenge testing strength</u> of the 1.45mm wall thickness tube is superior to the "unchallenged" MPT standard membrane.

Progress: Optimizing Tubule Support Fabrication

Hydrothermal Stability Testing of Membrane Scale-up Components <u>Proposed WGS Conditions:</u> $T = 500^{\circ}C$; P = 300 psig; Steam = 30% (in N₂)

Ceramic Tube Sheet and Ceramic/Glass Potting

Challenge Test Results

No leak development in the three major components was observed in over xxx hours of hydrothermal stability challenge testing.

Progress: Zeolite Membrane Growth Facility Established

Tube cutter

35-cm

Synthesis oven

V yamato

Stability testing system

Progress: Synthesis of MFI Zeolite Membranes on MPT Tubes

Progress: Properties of Modified Zeolite Membrane

Evolution of the H₂ and CO₂ ($P_{m,i}$) permeances and H₂/CO₂ separation factor ($\alpha_{H2/CO2}$) during the entire process of CCD modification of the tubular MFI zeolite membrane: (I) ramping up from 25 to 500°C and dwelling for 2 h at 500°C; (II) MDES vapor introduced; (III) MDES feed stopped; (IV) MDES vapor introduced for the second time; and (V) MDES vapor feed stopped – CCD modification completed. Typical gas separation properties for "high quality" MFI zeolite membranes before and after CCD modifications

	Т	α _{H2/CO2}	P _{m,H2}	P _{m,CO2}
Stage of				
Fab-	(°C)		(10 ⁻⁷ mol/	(10 ⁻⁷ mol/
rication			m².s.Pa)	m².s.Pa)
Before	20	0.19 – 0.35	0.54 – 0.75	1.6 –
CCD				3.2
Before	500	4.0 - 5.1	2.0 – 3.2	0.23 –
CCD				0.68
After 1 st	500	12 – 20	1.8 – 2.7	0.019 –
CCD				0.095
After 2 nd	500	20 – 45	1.0 – 1.9	0.011 –
CCD				0.025

Experimental and Modeling Studies of WGS in Membrane Reactors at High Pressures

Design of reactor for longer tube (12.5 and 25 cm) and higher pressure (30 bar)

Synthesis of stable, H₂S and coking resistant ceria based WGS catalyst

H₂ separation and WGS reaction experiments

Modeling H₂ separation and WGS reaction in single tube and multiple tube zeolite membrane reactor

Schematic illustration of the ends structure of the tubular membrane module to be used with radially compressed graphite seals (not to scale)

Progress: Lab-scale High-pressure WGS Membrane Reactor

- Membrane module followed the design of tube-shell heat exchanger
- Combined fixed-bed reactor, disk/single tube/multiple tube membrane reactor

Progress: Synthesis of WGS Catalyst and Experimental Study on WGS

Subtask 2.2 Evaluating performance of WGS catalyst

- Fe/Ce/Cr oxide based catalyst
- prepared by an ammonia assisted co-precipitation
- Reaction pressure: 1 bar
- CO conversion reached 76.2% at 500 °C, GHSV = 12,000 h⁻¹ and H₂O/CO ratio = 3.0

SU Progress: Modeling of WGS reaction in Fixed-bed and Membrane reactors

 $H_2O/CO = 3$ and $F_{CO} = 40$ ml/min

Progress: Preliminary Experimental Results of High Pressure WGS in Tubular Zeolite Membrane Reactor

Flow configuration in Membrane Reactor: Counter-current Temperature: 500°C

CO conversion in the MR as a function of reaction pressure with various WHSV:

- 1. $\chi_{CO} \sim 100\%$ at >15 bar with WHSV of 15,000h⁻¹
- 2. $\chi_{CO} \sim 100\%$ at >20 bar with WHSV of 30,000h⁻¹

 H_2 recovery and purity as functions of reaction pressure at WHSV of 15000 h⁻¹:

- 1. $R_{H2} \sim 100\%$ at >15 bar with $R_{S/CO}$ of 3.5
- 2. H_2 purity in this case is low (<78%)

ASJ Design, Fabrication and Testing of Bench Scale Membrane Modules

A-Module Design and Fabrication

MPT's multiple tube bundle with full ceramic potting and tube sheet and stainless steel housing

Thorough re-rating and possible redesign of the module to confirm its potential for safe operation at the desired temperature up to 600°C and pressure up to a potential of 55 bar

> Alternative free-end membrane module to handle thermal stress

ASU Design, Fabrication and Testing of Bench Scale Membrane Modules (Cont'd)

B- Modeling WGS and H₂/CO₂ Separation in the Membrane Modules

Modeling WGS in multiple channel membrane reactor using permeation and kinetic data obtained in the single-tube reactor

C-Preliminary WGS Membrane Reactor Testing with Multiple-Tube Bundles

Testing H_2 separation at high pressure and temperature on the intermediate-scale zeolite membrane module (7-14 tubes)

WGS catalyst fabrication (up to 6 kg)

Catalyst packing, gas and pressure handling and separation performance of bench-scale zeolite membrane module

Membrane and WGS-Reactor Testing at National Carbon Capture Center

Composition and conditions of syngas at NCCC Site

Composition or	NCCC Raw	Desired syngas
Temperature and	Syngas	for this project
pressure		
H ₂	5-7%	26%
CO	9-11%	27%
CO ₂	9-11%	14%
N ₂	69-74%	0
CH ₄	0.9-1.2%	0
H ₂ O	~0	34%
H ₂ S	400 ppm	50 ppm (0.56%)#
Pressure	180-190 psig	285 psig (20 bar)
Temperature	500-550 F	350-550°C

Picture of an MPT membrane test skid at NCCC for testing hydrogen separation by carbon molecular sieve membrane modules with shifted syngas.

Process Design, Economical Analysis and EH&S Risk Assessment

Conditions for Cost Estimation of Membrane Reactor (550 MW Coal-Burning IGCC Power Plant) Preliminary Proposed IGCC Process with H₂ Separation using MFI Zeolite Membrane and Carbon Dioxide Capture

Success Criteria at Decision Point

Decision	Date	Success Criteria					
Point							
		Success in testing WGS in 7 to14-tube					
End of	3/31/217	intermediate scale WGS zeolite membrane					
Budget		module with membranes having					
Period 1		H_2/CO_2 selectivity >45					
(end of	Success in testing WGS in 7 to14-tube intermediate scale WGS zeolite membrane module with membranes having H_2/CO_2 selectivity >45 H_2 permeance >600 GPU and operational at feed pressure up to 30 bar in 400-550°C; WGS membrane reactor achieves CO conversion >99%, CO ₂ capture/ recovery >90% and CO ₂ purity >95%.						
first18		operational at feed pressure up to 30 bar					
months)	in 400-550°C;						
		WGS membrane reactor achieves CO					
		conversion >99%, CO_2 capture/ recovery					
		>90% and CO_2 purity >95%.					

Project Schedule

Task			BI	P 1									
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Task 1.0 – Project Management and Planning (ASU)													
Task 2.0 – Experimental Study on WGS in Lab-scaleTubule Zeolite Membrane Reactor (ASU)													
Subtask 2.1 Setting up high pressure WGS reactor system													
Subtask 2.2 Evaluating performance of WGS catalyst													
Subtask 2.3 Experiments on WGS in lab-scale reactor													
Task 3.0 Modeling WGS in Zeolite Tubule Membrane Reactor (ASU)													
Task 4.0 Optimizing Support Tubule Fabrication (MPT)													
Task 5.0. Optimization of Zeolite Membrane Synthesis Methods (UC)													

Project Schedule (Cont'd)

Task 6.0 Scaling up Synthesis of High Quality Zeolite Membranes (UC)							
Subtask 6.1 Identifying condition to make 9 zeolite membrane tubes in one batch	_						
Subtask 6.2 Preparing 20-30 zeolite membrane tubes Intermediate-scale membrane reactor module							
Task 7.0 Design and Fabrication of Intermediate-Scale Zeolite Membrane Module (MPT)							
Task 8.0. Testing Intermediate-Scale Membrane Reactors (MPT)	_		_				_ BP1
Subtask 8.1 Design and modifying the membrane reactor testing skids (MPT)							
Subtask 8.2 Assembling and Testing Intermediate-Scale Zeolite Membrane Reactor (MPT/ASU)							
Task 9.0. Establishing Conceptual Process Design,						1	
Performance Model and Preliminary Techno-Economic							
Analysis of WGS Zeolite Membrane Reactor Technology							

Project Schedule (Cont'd)

Task 10.0 Modeling and Analysis of WGS in Bench Scale							
Zeonte Memorane Modules for WGS (ASU)							
Subtask 10.1 Modeling and analysis of WGS in multi-							
tube membrane reactor module							
Subtask 10.2 Optimization of operation conditions for WGS							
in zeolite membrane module							
Task 11.0. Fabrication of Large Quality Tubular Supports							
(MPT)				-			
Task 12.0 Preparation of Large Quantity MFI Zeolite Tube						F	3P2
Membranes for Bench-Scale Module (UC)							21 2
Subtask 12.1 Identifying conditions for fabrication of large							
quantity of zeolite membrane tubes							
Subtask 12.2 Fabrication of 200-300 zeolite membrane							
tubules with desired quality							
Task 13.0 Design and Fabrication of Bench-Scale Zeolite							
Membrane Module Housing with Seals (MPT/UC/ASU)							

Project Schedule (Cont'd)

Task 14.0 Building Bench-Scale Zeolite Membrane Reactors (MPT/ASU/UC)					-	
Subtask 14.1 Fabrication and evaluation of WGS catalyst for bench-scale WGS reaction (ASU)			1			
Subtask 14.2 Assembling and testing bench-scale zeolite membrane reactor (MPT/UC/ASU)						
Subtask 14.3. Modification and installation of the membrane reactor testing skid (MPT/ASU)					I	
Task 15.0 Testing WGS in Bench-Scale Membrane Reactor (MPT)						
Task 16.0 Process Design, Techno-Economic and EH&S Analyses (MPT)						
Subtask 16.1 Design of Commercial Scale WGS Zeolite Membrane Reactor and Process (MPT/Nexant)						
Subtask 16.2 Techno-Economic Analysis (TEA) of IGCC Plant (Nexant)						
Subtask 16.3 Preliminary Technology EH & S Assessment (MPT)						

BP2

